Superoxide dismutase-encoding gene of the obligate anaerobe Porphyromonas gingivalis is regulated by the redox-sensing transcription activator OxyR.
نویسندگان
چکیده
Inspection of the genomic DNA sequence of the oral anaerobe Porphyromonas gingivalis reveals that the micro-organism possesses the peroxide-sensing transcription activator OxyR, but not the superoxide-sensing transcription factor SoxR. Investigatation of oxidative-stress-responsive proteins in P. gingivalis by two-dimensional gel electrophoresis showed that two proteins were predominantly upregulated in oxidative conditions. In a P. gingivalis oxyR mutant these two proteins were not induced by treatment with hydrogen peroxide under aerobic conditions. By N-terminal amino acid sequencing, the two proteins were found to be superoxide dismutase and alkyl hydroperoxide reductase, encoded by sod and ahpC, respectively. Northern blot and lacZ fusion analyses revealed that P. gingivalis sod and ahpC were positively regulated by OxyR. Primer extension analysis located the promoter regions of sod and ahpC, and putative -35 boxes of these promoters were found immediately adjacent to their putative OxyR-binding sequences. Moreover, the promoter regions of sod and ahpC had the ability to bind P. gingivalis OxyR protein. These results demonstrate that P. gingivalis sod is one of the OxyR regulons, suggesting that OxyR functions as an intracellular redox sensor rather than a peroxide sensor in this organism. A sod gene of Bacteroides fragilis, which is taxonomically related to P. gingivalis, is inducible by redox stresses but not controlled by its OxyR. A DNA fragment including the B. fragilis sod promoter region could bind the P. gingivalis OxyR protein; however, a putative OxyR binding sequence within the DNA fragment was 14 bases distant from a putative -35 box of its promoter.
منابع مشابه
OxyR is involved in coordinate regulation of expression of fimA and sod genes in Porphyromonas gingivalis
Survival of Porphyromonas gingivalis in the constantly changing oral environment depends on its ability to alter gene expression. We demonstrate here that P. gingivalis activates superoxide dismutase expression in response to oxidative stress and represses expression of FimA, a subunit of major fimbriae. Coordinated expression of fimA and sod is regulated by the redox-sensing transcription fact...
متن کاملThe redox-sensitive transcriptional activator OxyR regulates the peroxide response regulon in the obligate anaerobe Bacteroides fragilis.
The peroxide response-inducible genes ahpCF, dps, and katB in the obligate anaerobe Bacteroides fragilis are controlled by the redox-sensitive transcriptional activator OxyR. This is the first functional oxidative stress regulator identified and characterized in anaerobic bacteria. oxyR and dps were found to be divergently transcribed, with an overlap in their respective promoter regulatory reg...
متن کاملRole of oxyR in the oral anaerobe Porphyromonas gingivalis.
Porphyromonas gingivalis is an anaerobic microorganism that inhabits the oral cavity, where oxidative stress represents a constant challenge. A putative transcriptional regulator associated with oxidative stress, an oxyR homologue, is known from the P. gingivalis W83 genome sequence. We used microarrays to characterize the response of P. gingivalis to H2O2 and examine the role of oxyR in the re...
متن کاملRole of superoxide dismutase activity in the physiology of Porphyromonas gingivalis.
Porphyromonas gingivalis is a gram-negative, obligate anaerobe strongly associated with chronic adult periodontitis. A previous study has demonstrated that this organism requires superoxide dismutase (SOD) for its modest aerotolerance. In this study, we have constructed a mutant deficient in SOD activity by insertional inactivation as well as a sod::lacZ reporter translational fusion construct ...
متن کاملRedox-mediated interactions of VHb (Vitreoscilla haemoglobin) with OxyR: novel regulation of VHb biosynthesis under oxidative stress.
The bacterial haemoglobin from Vitreoscilla, VHb, displays several unusual properties that are unique among the globin family. When the gene encoding VHb, vgb, is expressed from its natural promoter in either Vitreoscilla or Escherichia coli, the level of VHb increases more than 50-fold under hypoxic conditions and decreases significantly during oxidative stress, suggesting similar functioning ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Microbiology
دوره 152 Pt 4 شماره
صفحات -
تاریخ انتشار 2006